Funder	Project Title	Funding	Institution
Brain & Behavior Research Foundation	Investigating brain organization and activation in autism at the whole-brain level	\$30,000	California Institute of Technology
Brain & Behavior Research Foundation	Abnormal connectivity in autism	\$15,000	University of California, Los Angeles
Brain & Behavior Research Foundation	Role of negative regulators of FGF signaling in frontal cortex development and autism	\$15,000	University of California, San Francisco
Brain & Behavior Research Foundation	A Role for Cytoplasmic Rbfox1/A2BP1 in Autism	\$0	University of California, Los Angeles
Brain & Behavior Research Foundation	a-Actinin Regulates Postsynaptic AMPAR Targeting by Anchoring PSD-95	\$0	University of California, Davis
Brain & Behavior Research Foundation	a-Actinin Regulates Postsynaptic AMPAR Targeting by Anchoring PSD-95	\$0	University of California, Davis Medical Center University of California, Davis
Brain & Behavior Research Foundation	Regulation of Interneuron Development in the Cortex and Basal Ganglia by Coup-TF2	\$0	University of California, San Francisco
Brain & Behavior Research Foundation	The neural basis of weak central coherence in autism spectrum disorders	\$26,080	Yale University
Brain & Behavior Research Foundation	Integrative Regulatory Network Analysis of iPSCs Derived Neuronal Progenitors from Macrocephalic ASD Individuals in a Family-based Design	\$0	Yale University
Brain & Behavior Research Foundation	Activity-dependent Mechanisms of Visual Circuit Formation	\$0	Children's Research Institute (CRI) Children's National Medical Center
Brain & Behavior Research Foundation	Investigating the Role of RBFOX1 in Autism Etiology	\$0	University of Miami
Brain & Behavior Research Foundation	Perturbation of Excitatory Synapse Formation in Autism Spectrum Disorders	\$0	Max Planck Florida Institute for Neuroscience
Brain & Behavior Research Foundation	Roles of miRNAs in regulation of Foxp2 and in autism	\$15,000	Louisiana State University
Brain & Behavior Research Foundation	The role of the GRIP protein complex in AMPA receptor trafficking and autism spectrum disorders	\$15,000	Johns Hopkins University
Brain & Behavior Research Foundation	Neuropeptide regulation of juvenile social behaviors	\$14,775	Boston College
Brain & Behavior Research Foundation	Behavioral and neural responses to emotional faces in individuals with ASD	\$29,871	Harvard University
Brain & Behavior Research Foundation	Neural underpinning of emotion perception and its disorders	\$15,000	Dartmouth College
Brain & Behavior Research Foundation	Dysregulated Translation and Synaptic Dysfunction in Medium Spiny Neurons of Autism Model Mice	\$0	New York University
Brain & Behavior Research Foundation	Dissecting Reciprocal CNVs Associated With Autism	\$0	Duke University
Brain & Behavior Research Foundation	Engagement of Social Cognitive Networks during Game Play in Autism	\$0	Duke University
Brain & Behavior Research Foundation	The PI3K Catalytic Subunit p110delta as Biomarker and Therapeutic Target in Autism and Schizophrenia	\$0	Cincinnati Children's Hospital Medical Center University of Cincinnati
Brain & Behavior Research Foundation	Probing the temporal dynamics of aberrant neural communication and its relation to social processing deficits in autism spectrum disorders	\$29,987	University of Pittsburgh
Brain & Behavior Research Foundation	Enhancing neurobehavioural and clinical definitions in autism spectrum disorders	\$14,000	Monash University

Funder	Project Title	Funding	Institution
Brain & Behavior Research Foundation	Using near-infrared spectroscopy to measure the neural correlates of social and emotional development in infants at risk for autism spectrum disorder	\$14,950	University of New South Wales
Brain & Behavior Research Foundation	Brain-behavior interactions and visuospatial expertise in autism: a window into the neural basis of autistic cognition	\$14,800	Hospital Riviere-des-Praires, University of Montreal, Canada
Brain & Behavior Research Foundation	Development of a connectomic functional brain imaging endophenotype of autism	\$13,634	University of Cambridge
Department of Defense - Army	Dual modulators of GABA-A and Alpha7 nicotinic receptors for treating autism	\$0	University of California, Irvine
Department of Defense - Army	DISRUPTION OF TROPHIC INHIBITORY SIGNALING IN AUTISM SPECTRUM DISORDERS	\$180,832	Northwstern University
Department of Defense - Army	BRAIN MECHANISMS OF AFFECTIVE LANGUAGE COMPREHENSION IN AUTISM SPECTRUM DISORDERS	\$506,507	University of Maryland, College Park
Department of Defense - Army	How autism affects speech understanding in multitalker environments	\$0	University of Maryland, College Park
Department of Defense - Army	White matter glial pathology in autism	\$0	East Tennessee State University
Department of Defense - Army	The role of the new mTOR complex, mTORC2, in autism spectrum disorders	\$0	Baylor College of Medicine
Autism Research Institute	3 Tesla 31Phosphorus magnetic resonance spectroscopy in disorder with abnormal bioenergetics	\$0	Massachusetts General Hospital
Autism Research Institute	Neuroprotective effects of oxytocin receptor signaling in the enteric nervous system	\$0	Columbia University
Autism Research Institute	Urokinase-type plasminogen activator plasma concentration and its relationship to hepatocyte growth factor (HGF) and GABA levels in autistic children	\$0	Hartwick College
Autism Research Institute	Using high definition fiber tracking to define developmental neurobiologic mechanisms & a neural basis for behavioral heterogeneity	\$0	Carnegie Mellon University
Autism Research Institute	Matrix metalloproteinases expression in autism spectrum disorders	\$15,000	University of Naples
Autism Science Foundation	Examining connectivity patterns of brain networks participating in social cognition in ASD	\$0	San Diego State University
Autism Speaks	Genetic models of autism in human neural progenitor cells: a platform for therapeutic discovery	\$54,400	University of California, Los Angeles
Autism Speaks	Deciphering the function and regulation of AUTS2	\$0	University of California, San Francisco
Autism Speaks	A novel transplantation assay to study human PTEN ASD alleles in GABAergic interneurons	\$60,000	University of California, San Francisco
Autism Speaks	Role of CNTNAP2 in neuronal structural development and synaptic transmission	\$55,200	Stanford University
Autism Speaks	Thalamocortical connectivity in children and adolescents with ASD-A combined fcMRI and DTI approach	\$28,600	San Diego State University

Funder	Project Title	Funding	Institution
Autism Speaks	Stimulus preceding negativity and social stimuli in autism spectrum disorder	\$28,580	University of California, San Diego
Autism Speaks	Pathologic and genetic characterization of novel brain cortical patches in young autistic brains	\$53,000	University of California, San Francisco
Autism Speaks	Multimodal neuroimaging of motor dysfunction in autism spectrum disorders	\$58,000	University of Colorado Denver
Autism Speaks	Brain electrophysiology of interactive social stimuli	\$54,459	Yale University
Autism Speaks	Functional Connectivity during Working Memory in Children with ASD: A NIRS Study	\$29,500	Georgetown University
Autism Speaks	GABAergic dysfunction in autism	\$50,000	Johns Hopkins University
Autism Speaks	Understanding the brain basis of impaired imitation learning in autism	\$56,900	Kennedy Krieger Institute
Autism Speaks	Classifying autism etiology by expression networks in neural progenitors and differentiating neurons	\$149,999	Massachusetts General Hospital
Autism Speaks	Mapping functional connectivity networks in autism spectrum disorder with diffuse optical tomography	\$56,900	Washington University in St. Louis
Autism Speaks	High metabolic demand of fast-spiking cortical interneurons underlying the etiology of autism	\$56,000	Weill Cornell Medical College
Autism Speaks	Spatial attention in autism spectrum disorders	\$0	New York University
Autism Speaks	Behavioral and neural correlates of reward motivation in children with autism spectrum disorders	\$0	University of North Carolina at Chapel Hill
Autism Speaks	Attention & word learning in children with ASD- Translating experimental findings into intervention	\$53,500	Women & Infants Hospital
Autism Speaks	Social reward in autism: Electrophysiological, behavioral, and clinical correlates	\$51,400	Seattle Childrens Hospital
Autism Speaks	Macrocephalic autism: Exploring and exploiting the role of PTEN	\$0	University of Wisconsin - Madison
Autism Speaks	Preference acquisition in children and adolescents with and without autism spectrum disorder	\$0	Dalhousie University
Autism Speaks	Neuropathology of the social-cognitive network in Autism: a comparison with other structural theories	\$143,728	University of Oxford
National Institutes of Health	Met signaling in neural development and circuitry formation	\$230,032	University of Arizona
National Institutes of Health	Project 4: Calcium signaling defects in autism (Pessah/Lein)	\$109,730	University of California, Davis
National Institutes of Health	Role of neurexin in synapse formation and maintenance	\$53,942	Stanford University
National Institutes of Health	Biology of non-coding RNAs associated with psychiatric disorders	\$430,144	University of Southern California
National Institutes of Health	Refining the Tourette Syndrome phenotype across diagnoses to aid gene discovery	\$417,271	University of California, San Francisco

Funder	Project Title	Funding	Institution
National Institutes of Health	Dissecting neural mechanisms integrating multiple inputs in C. elegans	\$477,449	Salk Institute for Biological Studies
National Institutes of Health	The neural substrates of higher-level learning in autism	\$221,760	University of California, Davis
National Institutes of Health	The computational basis of theory of mind in the human brain	\$130,695	California Institute of Technology
National Institutes of Health	Multimodal imaging of social brain networks in ASD	\$148,945	San Diego State University
National Institutes of Health	Investigating the role of neurexin-1 mutation in autism using human induced neuro	\$49,214	Stanford University
National Institutes of Health	Cytoplasmic functions of Rbfox1, a candidate autism gene	\$231,000	University of California, Los Angeles
National Institutes of Health	Brain Systems Supporting Learning and Memory in Children with Autism	\$173,607	Stanford University
National Institutes of Health	Optogenetic treatment of social behavior in autism	\$385,000	University of California, Los Angeles
National Institutes of Health	Influence of attention and arousal on sensory abnormalities in ASD	\$186,000	University of California, San Diego
National Institutes of Health	Frontostriatal synaptic dysfunction in a model of autism	\$52,190	Stanford University
National Institutes of Health	Typical and pathological cellular development of the human amygdala	\$369,600	University of California, Davis
National Institutes of Health	Inhibitory mechanisms for sensory map plasticity in cerebral cortex	\$316,453	University of California, Berkeley
National Institutes of Health	Cellular density and morphology in the autistic temporal human cerebral cortex	\$352,346	University of California, Davis
National Institutes of Health	Mathematical cognition in autism: A cognitive and systems neuroscience approach	\$610,784	Stanford University
National Institutes of Health	Neural mechanisms of tactile sensation in rodent somatosensory cortex	\$246,278	University of California, Berkeley
National Institutes of Health	Structural and functional connectivity of large-scale brain networks in autism	\$168,978	Stanford University
National Institutes of Health	Linking local activity and functional connectivity in autism	\$360,142	San Diego State University
National Institutes of Health	Development of the functional neural systems for face expertise	\$461,095	University of California, San Diego
National Institutes of Health	Integrative functions of the planum temporale	\$432,343	University of California, Irvine
National Institutes of Health	Cell adhesion molecules in CNS development	\$515,850	The Scripps Research Institute - California
National Institutes of Health	Function and structure adaptations in forebrain development	\$520,098	University of Southern California
National Institutes of Health	Function of neurexins	\$461,977	Stanford University
National Institutes of Health	Kinetics of drug macromolecule complex formation	\$687,969	University of California, San Diego
National Institutes of Health	Neural synchronydysfunction of gamma oscillations in autism	\$254,470	University of Colorado Denver

Funder	Project Title	Funding	Institution
National Institutes of Health	Neural markers of shared gaze during simulated social interactions in ASD	\$416,250	Yale University
National Institutes of Health	The social brain in schizophrenia and autism spectrum disorders	\$498,431	Hartford Hospital
National Institutes of Health	Morphogenesis and function of the cerebral cortex	\$393,228	Yale University
National Institutes of Health	Social brain networks for the detection of agents and intentions	\$399,300	Yale University
National Institutes of Health	Neuroimaging of top-down control and bottom-up processes in childhood ASD	\$371,791	Georgetown University
National Institutes of Health	Impact of SynGAP1 mutations on synapse maturation and cognitive development	\$661,570	The Scripps Research Institute - Florida
National Institutes of Health	Monolingual and bilingual infants' sensitivity to agreement morphology in Spanish	\$137,605	Florida International University
National Institutes of Health	Imaging signal transduction in single dendritic spines	\$449,208	Max Planck Florida Corporation
National Institutes of Health	ACE Center: Ontogeny and neural basis of social visual engagement in monkeys	\$304,370	Emory University
National Institutes of Health	Vasopressin receptor polymorphism and social cognition	\$310,085	Georgia State University
National Institutes of Health	Behavioral and neural processing of faces and expressions in nonhuman primates	\$334,541	Emory University
National Institutes of Health	The flexibility of individuation and ensemble representation	\$47,114	Northwestern University
National Institutes of Health	Investigating brain connectivity in autism at the whole-brain level	\$232,307	Indiana University
National Institutes of Health	Wnt modulation as a treatment for autism spectrum disorders	\$184,568	University of Iowa
National Institutes of Health	Molecular dissection of calmodulin domain functions	\$310,222	University of Iowa
National Institutes of Health	Functional anatomy of face processing in the primate brain	\$1,555,641	National Institutes of Health
National Institutes of Health	Learning and plasticity in the human brain	\$392,666	National Institutes of Health
National Institutes of Health	The cognitive neuroscience of autism spectrum disorders	\$997,922	National Institutes of Health
National Institutes of Health	Dysfunction of sensory inhibition in autism	\$258,134	Johns Hopkins University
National Institutes of Health	High throughput screen for small molecule probes for neural network development	\$388,800	Johns Hopkins University
National Institutes of Health	EEG-based assessment of functional connectivity in autism	\$175,176	Kennedy Krieger Institute
National Institutes of Health	A neural model of fronto-parietal mirror neuron system dynamics	\$178,100	University of Maryland, College Park
National Institutes of Health	Dynamic regulation of Shank3 and ASD	\$604,587	Johns Hopkins University
National Institutes of Health	Transcriptional control of inhibitory synapse formation	\$353,295	Dana-Farber Cancer Institute

Funder	Project Title	Funding	Institution
National Institutes of Health	Using Drosophila to characterize the molecular pathogenesis of autism	\$234,000	Massachusetts Institute of Technology
National Institutes of Health	Behavioral, fMRI, and anatomical MRI investigations of attention in autism	\$49,214	Massachusetts Institute of Technology
National Institutes of Health	Shank3 in synaptic function and autism	\$385,200	Massachusetts Institute of Technology
National Institutes of Health	Impairments of theory of mind disrupt patterns of brain activity	\$308,160	Massachusetts Institute of Technology
National Institutes of Health	Functional connectivity substrates of social and non- social deficits in ASD	\$719,629	Massachusetts General Hospital
National Institutes of Health	Artifacts as windows to other minds: Social reasoning in typical and ASD children	\$49,214	Boston University
National Institutes of Health	Verbal/non-verbal asynchrony in adolescents with high- functioning autism	\$402,978	Emerson College
National Institutes of Health	Semaphorin4D and PlexinB1 mediate GABAergic synapse development in mammalian CNS	\$27,814	Brandeis University
National Institutes of Health	The effects of autism on the sign language development of deaf children	\$53,942	Boston University
National Institutes of Health	Brain bases of language deficits in SLI and ASD	\$583,471	Massachusetts Institute of Technology
National Institutes of Health	Elucidating the function of class 4 semaphorins in GABAergic synapse formation	\$325,130	Brandeis University
National Institutes of Health	Time Perception and Timed Performance in Autism	\$248,938	Michigan State University
National Institutes of Health	Molecular mechanisms of the synaptic organizer alphaneurexin	\$373,200	University of Michigan
National Institutes of Health	Assessment of glutamate delta-1 receptor in mental disorders	\$218,250	Creighton University
National Institutes of Health	The impact of Pten signaling on neuronal form and function	\$375,706	Dartmouth College
National Institutes of Health	Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior	\$248,999	Princeton University
National Institutes of Health	Caspr2 as an autism candidate gene: A proteomic approach to function & structure	\$305,280	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
National Institutes of Health	Novel regulatory network involving non-coding role of an ASD candidate gene PTEN	\$240,480	Albert Einstein College of Medicine of Yeshiva University
National Institutes of Health	Pragmatics and semantics in autism spectrum disorder	\$27,487	City University of New York Graduate School and University Center
National Institutes of Health	The neural bases of top-down attentional control in autism spectrum disorders	\$27,578	City College of New York
National Institutes of Health	NINDS comment: Disruption of Reelin biosynthesis by de novo missense mutations found in aut	\$32,615	State University of New York Upstate Medical Center
National Institutes of Health	The neurophysiology of sensory processing and multisensory integration in ASD	\$437,684	Syracuse University

Funder	Project Title	Funding	Institution
National Institutes of Health	Monoallelic expression in neurons derived from induced pluripotent stem cells	\$404,100	Albert Einstein College of Medicine of Yeshiva University
National Institutes of Health	Modeling 5-HT-absorbing neurons in neuropathology of autism	\$200,400	Albert Einstein College of Medicine of Yeshiva University
National Institutes of Health	Cell adhesion molecules in autism: A whole-brain study of genetic mouse models	\$448,320	Cold Spring Harbor Laboratory
National Institutes of Health	Bayesian variable selection in generalized linear models with missing variables	\$229,953	Hunter College (City University of New York)
National Institutes of Health	Role of neuronal migration genes in synaptogenesis and plasticity	\$53,942	Weill Cornell Medical College
National Institutes of Health	Neural basis of behavioral flexibility	\$347,607	Mount Sinai School of Medicine
National Institutes of Health	Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$451,202	Sloan-Kettering Institute for Cancer Research
National Institutes of Health	Taste, smell, and feeding behavior in autism: A quantitative traits study	\$541,983	University of Rochester
National Institutes of Health	Sensory processing and integration in autism	\$524,517	Albert Einstein College of Medicine of Yeshiva University
National Institutes of Health	Auditory and integrative functions of the prefrontal cortex	\$374,016	University of Rochester
National Institutes of Health	Regulation of spine morphogenesis by NrCAM	\$213,120	University of North Carolina at Chapel Hill
National Institutes of Health	Neural circuits that regulate social motivation in autism	\$150,542	University of North Carolina at Chapel Hill
National Institutes of Health	Statistical analysis of biomedical imaging data in curved space	\$313,376	University of North Carolina at Chapel Hill
National Institutes of Health	Neuronal basis of vicarious reinforcement dysfunction in autism spectrum disorder	\$297,527	Duke University
National Institutes of Health	Analysis of Shank3 complete and temporal and spatial specific knockout mice	\$408,192	Duke University
National Institutes of Health	The striatal circuitry underlying autistic-like behaviors	\$31,975	Duke University
National Institutes of Health	Effect of paternal age on mutational burden and behavior in mice	\$177,600	University of North Carolina at Chapel Hill
National Institutes of Health	Evaluating the time-dependent unfolding of social interactions in autism	\$196,987	University of Cincinnati
National Institutes of Health	Computational characterization of language use in autism spectrum disorder	\$692,911	Oregon Health & Science University
National Institutes of Health	Characterizing mechanistic heterogeneity across ADHD and autism	\$556,250	Oregon Health & Science University
National Institutes of Health	Testing the hyperspecificity hypothesis: A neural theory of autism	\$189,836	Children's Hospital of Philadelphia
National Institutes of Health	Novel computational methods for higher order diffusion MRI in autism	\$601,657	University of Pennsylvania
National Institutes of Health	Cognitive control of emotion in autism	\$102,004	University of Pittsburgh

Funder	Project Title	Funding	Institution
National Institutes of Health	Magnetoencephalographic studies of lexical processing and abstraction in autism	\$291,317	University of Pennsylvania
National Institutes of Health	Development of ventral stream organization	\$137,338	University of Pittsburgh
National Institutes of Health	Functional connectivity in autism spectrum disorders	\$251,250	Children's Hospital of Philadelphia
National Institutes of Health	Structural and functional neuroimaging of the auditory system in autism	\$157,938	Children's Hospital of Philadelphia
National Institutes of Health	Engrailed targets and the control of synaptic circuits in Drosophila	\$361,875	University of Puerto Rico Medical Sciences Campus
National Institutes of Health	Genetic-imaging study of obsessive compulsive behavior in autism	\$360,826	Brown University
National Institutes of Health	Cerebellar modulation of frontal cortical function	\$286,989	University of Memphis
National Institutes of Health	Psychobiological investigation of the socioemotional functioning in autism	\$333,590	Vanderbilt University Medical Center
National Institutes of Health	Neurobehavioral investigation of tactile features in autism spectrum disorders	\$161,107	Vanderbilt University Medical Center
National Institutes of Health	Motor control and cerebellar maturation in autism	\$157,148	University of Texas Southwestern Medical Center
National Institutes of Health	The microstructural basis of abnormal connectivity in autism	\$276,865	University of Utah
National Institutes of Health	Study of health outcomes in children with autism and their families	\$496,440	Lewin Group, Inc.
National Institutes of Health	Molecular mechanisms of electrical synapse formation in vivo	\$90,000	Fred Hutchinson Cancer Research Center
National Institutes of Health	Physiology of attention and regulation in children with ASD and LD	\$327,380	Seattle Children's Hospital
National Institutes of Health	Networked cortical responses to movement associated with ASD	\$384,222	University of Washington
National Institutes of Health	Electrophysiological response to executive control training in autism	\$89,670	University of Washington
National Institutes of Health	Executive function in children with typical and atypical language abilities	\$493,697	University of Wisconsin - Madison
National Institutes of Health	Statistical word learning in children with language disorders	\$29,355	University of Wisconsin - Madison
National Institutes of Health	Development of face processing expertise	\$339,118	University of Toronto
Organization for Autism Research	A preliminary investigation of the neurobehavioral basis of sensory behavior in autism	\$20,000	Kennedy Krieger Institute
Simons Foundation	Function and dysfunction of neuroligins in synaptic circuits	\$450,000	Stanford University
Simons Foundation	Atypical architecture of prefrontal cortex in young children with autism	\$149,715	University of California, San Diego
Simons Foundation	Autism and the insula: Genomic and neural circuits	\$0	California Institute of Technology

Funder	Project Title	Funding	Institution
Simons Foundation	Using fruit flies to map the network of autism-associated genes	\$124,996	University of California, San Diego
Simons Foundation	A functional genomic analysis of the cerebral cortex	\$486,802	University of California, Los Angeles
Simons Foundation	Modeling multiple heterozygous genetic lesions in autism using Drosophila melanogaster	\$201,838	University of California, Los Angeles
Simons Foundation	Characterizing the regulatory pathways and regulation of AUTS2	\$0	University of California, San Francisco
Simons Foundation	CLARITY: circuit-dynamics and connectivity of autism-related behavior	\$248,468	Stanford University
Simons Foundation	Functional analysis of EFR3A mutations associated with autism	\$62,500	Yale University
Simons Foundation	Role of major vault protein in autism	\$0	Yale University
Simons Foundation	Functional analysis of EPHB2 mutations in autism - Project 1	\$89,633	Yale University
Simons Foundation	Identification and analysis of ASD patients with PI3K/mTOR signalopathies	\$66,500	Emory University
Simons Foundation	Cerebellar plasticity and learning in a mouse model of autism	\$62,500	University of Chicago
Simons Foundation	Amygdala circuitry of impaired social-emotional behavior in autism	\$58,488	Rosalind Franklin University of Medicine and Science
Simons Foundation	Altered sensorimotor processing in a mouse model of autism	\$60,000	Louisiana State University School of Veterinary Medicine
Simons Foundation	Role of LIN28/let-7 axis in autism	\$62,500	Johns Hopkins University School of Medicine
Simons Foundation	Retrograde synaptic signaling by Neurexin and Neuroligin in C. elegans	\$125,000	Massachusetts General Hospital
Simons Foundation	Protein interaction networks in autism	\$62,500	Harvard Medical School
Simons Foundation	Corticothalamic circuit interactions in autism	\$200,000	Boston Children's Hospital
Simons Foundation	Analysis of autism linked genes in C. elegans	\$62,500	Massachusetts General Hospital
Simons Foundation	Molecular signatures of autism genes and the 16p11.2 deletion	\$62,500	Massachusetts General Hospital
Simons Foundation	Functional analysis of EPHB2 mutations in autism	\$124,950	McLean Hospital
Simons Foundation	Mapping functional neural circuits that mediate social behaviors in autism	\$62,500	Duke University Medical Center
Simons Foundation	Alterations in brain-wide neuroanatomy in autism mouse models	\$300,000	Cold Spring Harbor Laboratory
Simons Foundation	Canonical neural computation in autism	\$321,362	New York University
Simons Foundation	Neurexin-neuroligin trans-synaptic interaction in learning and memory	\$100,000	Columbia University
Simons Foundation	Social brain circuits and fever-evoked response in 16p11.2 mice	\$87,500	Cold Spring Harbor Laboratory

Funder	Project Title	Funding	Institution
Simons Foundation	Role of neurexin in the amygdala and associated fear memory	\$0	Columbia University
Simons Foundation	Modeling alteration of RBFOX1 (A2BP1) target network in autism	\$60,000	Columbia University
Simons Foundation	Interneuron subtype-specific malfunction in autism spectrum disorders	\$120,000	New York University School of Medicine
Simons Foundation	CNTNAP2 regulates production, migration and organization of cortical neurons	\$62,496	Memorial Sloan-Kettering Cancer Center
Simons Foundation	Pathogenic roles of paternal-age-associated mutations in autism	\$62,500	Weill Cornell Medical College
Simons Foundation	RNA dysregulation in autism	\$250,000	The Rockefeller University
Simons Foundation	Investigation of a possible role of the protocahderin gene cluster in autism	\$150,000	Columbia University
Simons Foundation	Investigation of social brain circuits and fever-evoked response in 16p11.2 mice	\$0	Cold Spring Harbor Laboratory
Simons Foundation	Correcting excitatory-inhibitory imbalance in autism	\$112,500	University of North Carolina at Chapel Hill
Simons Foundation	ERK signaling in autism associated with copy number variation of 16p11.2	\$0	Case Western Reserve University
Simons Foundation	Identification of genes responsible for a genetic cause of autism	\$125,000	Case Western Reserve University
Simons Foundation	Impact of NR2B mutations on NMDA receptors and synapse formation	\$60,000	Case Western Reserve University
Simons Foundation	Neuroligin, oxidative stress and autism	\$150,000	Oklahoma Medical Research Foundation
Simons Foundation	Unreliability of neuronal responses in mouse models of autism	\$62,500	Carnegie Mellon University
Simons Foundation	Transcriptional responsiveness in lymphoblastoid cell lines	\$0	University of Pennsylvania
Simons Foundation	Role of endosomal NHE6 in brain connectivity and autism	\$62,500	Brown University
Simons Foundation	Hippocampal mechanisms of social learning in animal models of autism	\$62,500	Baylor College of Medicine
Simons Foundation	Multisensory processing in autism	\$0	Baylor College of Medicine
Simons Foundation	Genetic studies of autism-related Drosophila neurexin and neuroligin	\$175,802	University of Texas Health Science Center, San Antonio
Simons Foundation	Determining the role of GABA in four animal models of autism	\$166,895	Neurochlore
Simons Foundation	Local connectivity in altered excitation/inhibition balance states	\$125,000	Weizmann Institute of Science
Simons Foundation	Genetic model to study the ASD-associated gene A2BP1 and its target PAC1	\$125,000	Weizmann Institute of Science
	A2BP1 and its target PAC1		

Funder	Project Title	Funding	Institution
Simons Foundation	Social interaction and reward in autism: Possible role for ventral tegmental area	\$124,936	University of Geneva
Simons Foundation	Contribution of cerebellar CNTNAP2 to autism in a mouse model	\$60,000	University of Oxford
Simons Foundation	Subependymal zone function in autism spectrum disorders	\$0	University of Oxford
National Science Foundation	Experience and cognitive development in infancy	\$0	University of California, Davis
National Science Foundation	Face perception: Mapping psychological spaces to neural responses	\$0	Stanford University
National Science Foundation	Synchronous activity in networks of electrically coupled cortical interneurons	\$0	University of California, Davis
National Science Foundation	Neural basis of cross-modal influences on perception	\$163,755	University of California, San Diego
National Science Foundation	HCC:Small:Computational studies of social nonverbal communication	\$0	University of Southern California
National Science Foundation	CAREER: Dissecting the neural mechanisms for face detection	\$0	California Institute of Technology
National Science Foundation	RI: Small: Addressing visual analogy problems on the raven's intelligence test	\$0	Georgia Tech Research Corporation
National Science Foundation	Action anticipation in infants	\$105,936	University of Chicago
National Science Foundation	SHB: Type II (INT): Synthesizing self-model and mirror feedback imageries with applications to behavior modeling for children with autism	\$0	University of Kentucky Research Foundation
National Science Foundation	BRIGE: Emotion mapping of children through human- robot interaction and affective computing	\$0	University of Louisville Research Foundation Inc
National Science Foundation	CAREER: Typical and atypical development of brain regions for theory of mind	\$148,521	Massachusetts Institute of Technology
National Science Foundation	MRI: Acquistion of an Infrared Eye Tracker to Study the Emergence, Use, Loss, and Requisition of Communication Skills	\$41,575	Emerson College
National Science Foundation	CAREER: The role of prosody in word segmentation and lexical access	\$0	Michigan State University
National Science Foundation	Multiple systems in theory of mind development	\$0	Rutgers, The State University of New Jersey - New Brunswick
National Science Foundation	CAREER: Integrative behavioural and neurophysiological studies of normal and autistic cognition using video game environments	\$0	Cornell University
National Science Foundation	CDI-TYPE II: From language to neural representations of meaning	\$0	Carnegie Mellon University
National Science Foundation	CAREER: Statistical models and classification of time- varying shape	\$0	University of Utah

Funder	Project Title	Funding	Institution
	Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnosis of Brain Diseases	\$345,000	University of Washington